University of California

Insights: Water & Drought Online Seminar Series

Hosted by:

University of California, Agriculture and Natural Resources
California Institute for Water Resources
& Strategic Water Initiative

Organized by:

Daniele Zaccaria, David Lewis, Samuel Sandoval Solis, Doug Parker, and Faith Kearns

Managing corn under California's drought conditions

Presented by: Mark Lundy, Agronomy Advisor, UC Cooperative Extension

With contributions from:

Allan Fulton, UCCE

Carol Frate, UCCE

Steve Wright, UCCE

Robert Hutmacher, UCCE, UCD

Larry Schwankl, UCCE, UCD

Jeff Dahlberg, UCCE, KAC

Jeff Mitchell, UCCE, UCD

Outline

- General principles of water productivity under water deficits
- Water use by irrigated corn in California
- Key management decisions related to water productivity
- Grain corn vs silage corn; alternatives to corn
- Irrigation system design
- Conservation agriculture

More crop per drop: water productivity

Fig. 1. Generalized relationships between applied irrigation water, ET, and crop grain yield. I_W indicates the point beyond which the productivity of irrigation water starts to decrease, and I_M indicates the point beyond which yield does not increase any further with additional water application.

Fereres and Soriano. 2007. J. Exp. Bot.

More crop per drop: water productivity

Adapted from: Farre and Faci. 2006. Ag. Water Mgt.

More crop per drop: water productivity

Adapted from: Farre and Faci. 2006. Ag. Water Mgt.

Water use by irrigated corn in California

Planting date affects corn water use

Adapted from: Schwankle and Fulton. Corn ET Estimates:

http://ucanr.edu/sites/Drought/files/167003.pdf

Planting date affects corn water use

Variety choice affects water productivity

Tsimba et al. 2013. Field Crops Res.

Variety choice affects water productivity

Cooper et al. 2014. J. Exp. Bot.

Image courtesy: Purdue University

http://extension.entm.purdue.edu/fieldcropsipm/corn-stages.php

Image courtesy: Purdue University

http://extension.entm.purdue.edu/fieldcropsipm/corn-stages.php

Image courtesy: Mississippiostaten Unikersity

http://graincareps.blogspootscoom/2000/10/learly-frost-and-potential-yield-losses.html

In-season management: Review

Alternatives to corn: sorghum

- Varieties available that harvest for silage 90 to 110 DAP
 - 38 varieties tested in UC program
- 16 to 18 inches ET
- 9.5 to 13.5 inches applied water
- Deeper rooted than corn
- 22 to 28 tons/acre silage
- BUT: lower feed quality than corn silage
 - Brown midrib sorghum (BMR) varieties offer better feed quality
 - BMR varieties less drought tolerant

Alternatives to corn: sorghum

Adapted from: Farre and Faci. 2006. Ag. Water Mgt.

http://sorghum.ucanr.edu/http://alfalfa.ucdavis.edu/

Alternatives to corn: sudangrass

Flexibility

- Number of cuttings flexible to limited water supplies
- May be green chopped, ensiled, or harvested as hay
- But: Be alert to risk prussic acid accumulation
 - Affected by drought

Concept: Distribution of furrow irrigation water

Distribution midway through set

Distribution at the end of the set

For efficient furrow irrigation:

70 - 80 % of applied water retained in root zone

Potential for slight deficit and less yield in low quarter of field

Distribution at the end of the set

For inefficient furrow irrigation:

50% or more of applied water can be lost below the root zone

Water retained in root zone

Water percolation past root zone

Irrigation system design: Overhead

2009 WSREC Trial

- Overhead Season Total =
 20.13 inches;
 57 irrigation events
- Furrow Season Total (3 acres) = 32.76 inches;
 11 irrigation events
- Tradeoff = \$

Irrigation system design: SDI

Lamm and Trooien. 2003. Irrig. Sci.

- Water savings versus
 Overhead
- Opportunities for rotations with tomatoes and other largely SDI crops in California?
- Drawback: expense

Conservation Agriculture for improved water productivity

- No-tillage reduces evaporative losses
 ≈ ½-1 inch
- Residue retention reduces evaporative losses
 ≈ 2-4 inches

Adapted from: Mitchell et al. 2012. Cal. Ag.

Summary

- Water limitations will reduce the productivity of a corn crop
- However, careful consideration of:
- 1) Variety choice
- 2) Planting date
- 3) Tillage practices
- 4) Residue management
- 5) In-season agronomic practices
- Avoidance of stress at critical periods of development and
- 7) Irrigation system design and performance

will maximize the productivity of the water that is applied.

University of California

Insights: Water & Drought Online Seminar Series

For further resources, visit us at ciwr.ucanr.edu

Contributing partners:

University of California
Agriculture and Natural Resources
Strategic Water Initiative

web: ucanr.edu/waterinitiative

California Institute for Water Resources
University of California
Agriculture and Natural Resources

web: ciwr.ucanr.edu
Twitter: @ucanrwater

California Department of Water Resources

web: www.dwr.ca.gov

Twitter: @CA_DWR

