University of California

Agriculture and Natural Resources

Making a Difference for California

10:00a - Program begins
Topics:
Are You Paying Too Much for Corn Silage?
HELENA

Jennifer Heguy, UCCE Dairy Farm Advisor - Merced, Stanislaus and San Joaquin Counties

California Corn Silage Piles -Adventures in Measuring Real Shrink

Dr. Peter Robinson, UCCE Dairy Nutrition Specialist
Silage Management Practices on California Dairies
People... Products... Knowledge...

Sustainable Conservation

Dr. Noelia Silva-del-Rio, UCCE Dairy Production
Medicine Specialist
c: DeLaval
Keys to Planning for a Successful Harvest - PANEL
Grower and Custom Harvester Panel
12p - Industry Sponsored Lunch

University of California

Agriculture and Natural Resources

Making a Difference for California

Are You Paying Too Much for

Corn Silage?

Jennifer Heguy - UC Cooperative Extension
Merced, Stanislaus \& San Joaquin Counties

University of California

Agriculture and Natural Resources

Making a Difference for California

Are You Charging Too Little

for Corn Silage?

Jennifer Heguy - UC Cooperative Extension
Merced, Stanislaus \& San Joaquin Counties

Outline

- Correcting for Dry Matter (DM) at Harvest
- Determining Whole Field DM
- Challenges and Proposed Solutions
- Other monitoring
- Length of cut
- Kernel processing

Corn Silage 2014

- Prices? \$75-\$95/ton
- 70/30 basis: 70\% moisture \& 30\% DM
- How much would you pay for corn silage delivered at 28\% DM?
- What about 32\% DM?

Correcting for DM

Actual DM \% x \$/ton = Corrected \$/ton 30\%

So, at 28\% DM \& \$75/ton:
28\% \times \$75/ton $=\$ 70 /$ ton 30\%

And, at 32\% DM \& \$75/ton:
32\% x $\$ 75 /$ ton $=\mathbf{\$ 8 0} /$ ton
30\%

Correcting for DM

Actual DM \% x \$/ton = Corrected \$/ton 30\%

Three fields of corn followed:

Average DM	$\mathbf{2 3} \%$	$\mathbf{2 8} \%$	$\mathbf{3 0} \%$
Corrected $\$$	$\$ 57.50$	$\$ 70$	$\$ 75$
Difference	$\$ 12.50$	$\$ 5$	$\$ 0$
Tons Harvested	1406	673	989
Total Savings	$\$ 17,576$	$\$ 3,364$	$\$ 0$

Sampling Corn Silage for DM Content

Average	23%	28%	30%
Minimum	18%	25%	25%
Maximum	28%	33%	35%

Dry matter can range widely

Differences in soil type, fertilization, irrigation, insect pressure and variety genetics may explain the large variation in DM observed.

Individual DM (from the field)

Individual DM (ascending order)

Corrected \$ per Load of Harvested Corn Silage

Extremes would set the price at $\mathbf{\$ 6 2 / t o n} \& \mathbf{8 8} /$ ton.

How to reduce error in estimating DM

Sample the field often!

	\$57.50/ton		\$70/ton		\$75/ton	
\$/ton	Min	Max	Min	Max	Min	Max
Individual	\$45	\$69	\$63	\$82	\$62	\$88
10 Samples Consecutively	\$53	\$61	\$68	\$73	\$71	\$78
Hourly Samples	\$55	\$59	\$67	\$74	\$72	\$76
	\uparrow					
	23 acre field, only 6 hours of harvest					

For fields harvested in a short amount of time, pulling samples more often than hourly may make sense.

Compositing Samples

Figure 4. Dumping (A) and quartering (B) sample. The intermediate stage of mixing is not shown.

Step 4. Mix the composite sample. Sweep a few square feet of a smooth concrete or composition surface, which is protected from wind and sun, clean with your whisk broom. Dump the contents of the bucket onto this clean area (fig. 4A). Mix the material thoroughly with the plasterer's spatula by repeatedly turning the TMR inward from the bottom to the top until it has a well-mixed homogenous appearance. It may be necessary to tear, slice, or clip large ingredients (such as citrus pulp, carrots, or long forages) with the plasterer's spatula or a pair of scissors into quarter-sized pieces or 1-inch lengths.
Step 5. Quarter the composite sample. Use the plasterer's spatula to separate the well-mixed pile into halves and then into quarters (fig. 4B).
Step 6. Bag the laboratory sample. Place two diagonally opposing quarters into the gallon plastic bag, squeeze out excess air, and seal it tightly (fig. 5). Bag the remaining feed as a reserve sample or return it to the feed bunk. Be sure to sweep up small particles with the whisk broom onto the spatula and include them in the laboratory samples.

Protocol on mixing and sampling the composite sample can be found at: http://anrcatalog.ucdavis.edu/pdf/8413.pdf

Dry Matter

Why monitor DM?

- Payment when buying/selling
- Inventory
- RB5 Compliance (field basis)
- Variety trials

On-farm measurement options

- Koster
- Microwave
- NIR

Other Monitoring

Kernel Processing \& Length of Cut

Importance -
corn silage is fed year round, but put up in a week's time

Suggested Monitoring

Hourly. Sample a truckload of forage for:

1. DM

- On-farm (microwave, koster tester, NIR)

2. Length of cut

- Penn State Shaker Box
- Tape measurement

3. Kernel Processing

- Bucket method (handout available)
- Cup method

University of California
Agriculture and Natural Resources

Making a Difference for California

Jennifer Heguy

Farm Advisor - Merced, Stanislaus \& San Joaquin Counties jmheguy@ucdavis.edu (209)525-6800

